Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Chem Biol Interact ; 393: 110938, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38484825

RESUMEN

Radiotherapy remains the preferred treatment option for cancer patients with the advantages of broad indications and significant therapeutic effects. However, ionizing radiation can also damage normal tissues. Unfortunately, there are few anti-radiation damage drugs available on the market for radiotherapy patients. Our previous study showed that rosamultin had antioxidant and hepatoprotective activities. However, its anti-radiation activity has not been evaluated. Irradiating small intestinal epithelial cells and mice with whole-body X-rays radiation were used to evaluate the in vitro and in vivo effects of rosamultin, respectively. Intragastric administration of rosamultin improved survival, limited leukocyte depletion, and reduced damage to the spleen and small intestine in irradiated mice. Rosamultin reversed the downregulation of the apoptotic protein BCL-2 and the upregulation of BAX in irradiated mouse small intestine tissue and in irradiation-induced small intestinal epithelial cells. DNA-PKcs antagonists reversed the promoting DNA repair effects of rosamulin. Detailed mechanistic studies revealed that rosamultin promoted Translin-associated protein X (TRAX) into the nucleus. Knockdown of TRAX reduced the protective effect of rosamultin against DNA damage. In addition, rosamultin reduced irradiation-induced oxidative stress through promoting Nrf2/HO-1 signaling pathway. To sum up, in vitro and in vivo experiments using genetic knockdown and pharmacological activation demonstrated that rosamultin exerts radioprotection via the TRAX/NHEJ and Nrf2/HO pathways.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Traumatismos por Radiación , Triterpenos , Humanos , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Reparación del ADN , Daño del ADN , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/prevención & control , ADN/metabolismo , Apoptosis
2.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38157008

RESUMEN

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Asunto(s)
Colitis , Saponinas , Ratas , Ratones , Animales , Piruvato Carboxilasa/metabolismo , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/metabolismo , Saponinas/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Macrófagos/metabolismo , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
Biochem Pharmacol ; 220: 116004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142837

RESUMEN

Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Neoplasias Colorrectales , Humanos , Animales , Ratones , Efrina-B3 , FN-kappa B/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/metabolismo , Carcinogénesis , Azoximetano/toxicidad , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neoplasias Colorrectales/metabolismo
4.
Phytomedicine ; 116: 154884, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37209605

RESUMEN

BACKGROUND: Lung cancer is the primary cause of cancer-related mortality worldwide owing to its strong metastatic ability. EGFR-TKI (Gefitinib) has demonstrated efficacy in metastatic lung cancer therapy, but most patients ultimately develop resistance to Gefitinib, leading to a poor prognosis. Pedunculoside (PE), a triterpene saponin extracted from Ilex rotunda Thunb., has shown anti-inflammatory, lipid-lowering and anti-tumor effects. Nevertheless, the therapeutic effect and potential mechanisms of PE on NSCLC treatment are unclear. PURPOSE: To investigate the inhibitory effect and prospective mechanisms of PE on NSCLC metastases and Gefitinib-resistant NSCLC. METHODS: In vitro, A549/GR cells were established by Gefitinib persistent induction of A549 cells with a low dose and shock with a high dose. The cell migratory ability was measured using wound healing and Transwell assays. Additionally, EMT-related Markers or ROS production were assessed by RT-qPCR, immunofluorescence, Western blotting, and flow cytometry assays in A549/GR and TGF-ß1-induced A549 cells. In vivo, B16-F10 cells were intravenously injected into mice, and the effect of PE on tumor metastases were determined using hematoxylin-eosin staining, Caliper IVIS Lumina, DCFH2-DA staining, and western blotting assays. RESULTS: PE reversed TGF-ß1-induced EMT by downregulating EMT-related protein expression through MAPK and Nrf2 pathways, decreasing ROS production, and inhibiting cell migration and invasion ability. Moreover, PE treatment enabled A549/GR cells to retrieve the sensitivity to Gefitinib and mitigate the biological characteristics of EMT. PE also significantly inhibited lung metastasis in mice by reversing EMT proteins expression, decreasing ROS production, and inhibiting MAPK and Nrf2 pathways. CONCLUSIONS: Collectively, this research presents a novel finding that PE can reverse NSCLC metastasis and improve Gefitinib sensitivity in Gefitinib-resistant NSCLC through the MAPK and Nrf2 pathways, subsequently suppressing lung metastasis in B16-F10 lung metastatic mice model. Our findings indicate that PE is a potential agent for inhibiting metastasis and improving Gefitinib resistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Triterpenos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Gefitinib/farmacología , Neoplasias Pulmonares/patología , Factor de Crecimiento Transformador beta1/farmacología , Factor 2 Relacionado con NF-E2 , Transición Epitelial-Mesenquimal , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Triterpenos/farmacología , Resistencia a Antineoplásicos
5.
J Nat Prod ; 85(6): 1522-1539, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35608269

RESUMEN

The inherent structural instability of some physalins has hampered the isolation and identification of these compounds for approximately 50 years, and an effective method to overcome these challenges remains unavailable. In the present study, the unprecedented tautomerization mechanism of unstable physalins was elucidated by performing isotopic labeling experiments and DFT calculations, which led to the successful separation of tautomers and isolation of highly pure products for the first time. As a result, 15 new physalins, physaminins A-O (1-15), as well as 17 known analogues (16-32), were isolated from the whole plants of Physalis minima L. The chemical structures of the new compounds were established by performing a comprehensive analysis of spectroscopic data, and their absolute configurations were confirmed by using computational ECD calculations and/or single-crystal X-ray diffraction analyses. All obtained isolates were evaluated for their antiproliferative effects against four human cancer cell lines (A549, HepG2, MCF-7, and SCG-7901) and two noncancerous cell lines (RAW 264.7 and human normal hepatocytes L02), as well as their anti-inflammatory activities by measuring their abilities to inhibit NO production in LPS-stimulated murine RAW 264.7 cells in vitro. Compounds 1-5, 13, 16, 18, 19, 23, and 30 exerted significant antiproliferative effects on the four human cancer lines, with IC50 values ranging from 0.2(0) to 24.7(2) µM, and these compounds were not toxic to the two noncancerous cell lines at a concentration of 10 µM. Moreover, compounds 7, 10, 11, 12, 14, 17, 22, and 27 significantly inhibited NO production, with IC50 values ranging from 2.9(1) to 9.5(2) µM.


Asunto(s)
Physalis , Animales , Antiinflamatorios/farmacología , Humanos , Ratones , Estructura Molecular , Physalis/química , Células RAW 264.7
6.
Phytochemistry ; 191: 112925, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34487922

RESUMEN

Physalins, including physalins and neophysalins, are a class of highly oxygenated ergostane-type steroids. They are commonly known by the name of 16,24-cyclo-13,14-seco steroids, in which the disconnection of C-13 and C-14 produces an eight or nine-membered ring and the carbocyclization of C-16 and C-24 generates a new six-membered ring. Meanwhile, the oxidation of C-18 methyl to carboxyl group forms a 18,20-lactone, and the oxidation of C-14 and C-17 gets a heterocyclic oxygen acrossing rings C and D. Additionly, physalins frequently form an oxygen bridge to connect C-14 to C-27. Physalins are a kind of characteristic constituents from the species of the genus Physalis (Solanaceae), which are reported with a wide array of pharmacological activities, including anticancer, anti-inflammatory, immunoregulatory, antimicrobial, trypanocidal and leishmanicidal, antinociceptive, antidiabetic and some other activities. Herein,the research progress of physalins from the genus Physalis during the decade from 1970 to 2021 on phytochemistry, pharmacology, pharmacokinetics and application in China are systematically presented and discussed for the first time.


Asunto(s)
Antiinfecciosos , Physalis , Antiinflamatorios , Extractos Vegetales , Esteroides
7.
Phytother Res ; 35(8): 4485-4498, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33977594

RESUMEN

Acute lung injury (ALI) is a serious clinical disease. Rotundic acid (RA), a natural ingredient isolated from Ilex rotunda Thunb, exhibits multiple pharmacological activities. However, RA's therapeutic effect and mechanism on ALI remain to be elucidated. The present study aimed to further clarify its regulating effects on inflammation in vitro and in vivo. Our results indicated that RA significantly inhibited the overproduction of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). RA decreased ROS production and calcium influx. In addition, RA inhibited the activation of PI3K, MAPK, and NF-κB pathways and enhanced the activity of nuclear factor E2-related factor 2 (Nrf2) signaling. The cellular thermal shift assay and docking results indicated that RA bind to TLR4 to block TLR4 dimerization. Furthermore, RA pretreatment effectively inhibited ear edema induced by xylene and LPS-induced endotoxin death and had a protective effect on LPS-induced ALI. Our findings collectively indicated that RA has anti-inflammatory effects, which may serve as a potential therapeutic option for pulmonary inflammation.


Asunto(s)
Lesión Pulmonar Aguda , Antiinflamatorios , Receptor Toll-Like 4 , Triterpenos/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Transducción de Señal , Receptor Toll-Like 4/metabolismo
8.
J Ethnopharmacol ; 266: 113401, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32980486

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine, the main pathogenesis of severe hand, foot and mouth disease (HFMD) is that the heat and wet poisons are deeply trapped in the viscera, which causes the deficiency of Qi and Yin in the patient's body. Ginsenoside Rb1 (Rb1) is the most abundant triterpenoid saponin in Panax quinquefolius L., which has the function of Qi-invigorating and Yin-nourishing. Enterovirus 71 (EV71) is one of the causative pathogens of HFMD, especially the form associated with some lethal complications. Therefore, the therapeutic effect of Rb1 on this disease caused by EV71 infection is worth exploring. AIM OF THE STUDY: We explored the effective antiviral activities of Rb1 against EV71 in vitro and in vivo and investigated its preliminary antiviral mechanisms. MATERIAL AND METHODS: EV71-infected two-day-old suckling mice model was employed to detect the antiviral effects of Rb1 in vivo. To detect the antiviral effects of Rb1 in vitro, cytopathic effect (CPE) reduction assay was performed in EV71-infected Rhabdomyosarcoma (RD) cells. Interferon (IFN)-ß interference experiment was employed to detect the antiviral mechanism of Rb1. RESULTS: In this paper, we first found that Rb1 exhibited strong antiviral activities in EV71-infected suckling mice when compared to those of ribavirin. Administration of Rb1 reduced the CPE of EV71-infected RD cells in a dose-dependent manner. Moreover, EV71-induced viral protein-1 (VP-1) expression was significantly reduced by Rb1 administration in vitro and in vivo. Furthermore, Rb1 treatment could induce high cellular and humoral immune responses in vivo. Meanwhile, Rb1 contributed to the enhanced Type I IFN responses and IFN-ß knockdown reversed the antiviral activity of Rb1 in vitro. CONCLUSION: In summary, our findings suggest that Rb1 is an immune-stimulatory agent and provide an insight into therapeutic potentials of Rb1 for the treatment of EV71 infection.


Asunto(s)
Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Infecciones por Enterovirus/tratamiento farmacológico , Ginsenósidos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Antivirales/administración & dosificación , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Infecciones por Enterovirus/virología , Ginsenósidos/administración & dosificación , Humanos , Ratones , Ratones Endogámicos ICR , Panax/química , Rabdomiosarcoma/virología , Ribavirina/farmacología
9.
Nat Prod Res ; 35(22): 4865-4869, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32186200

RESUMEN

Oleiferoside B is a triterpenoid monomer compound, mainly isolated from roots of Camellia oleifera Abel, the underlying mechanism of its antitumour is not clear. In the present study, oleiferoside B potently inhibited SMMC-7721 and MCF-7 cells proliferation and cause cells apoptosis. In addition, it activated an autophagy-mediated cell death pathway, as indicated by the accumulated the ratio of LC3- II/LC3- I and inhibited apoptosis protein expression after pre-treatment with autophagy inhibitors 3-MA. Further studies showed that oleiferoside B-induced apoptosis and autophagy was attributed to ROS release. In vivo oleiferoside B (1.0, 0.5 mg/kg) effectively suppressed tumour growth. In conclusion, our finding reveals a novel mechanism of action of oleiferoside B in cancer cells via induction of apoptosis and autophagy through ROS generation. Therefore, our results provided new insight into the mechanism of the antitumour effect of oleiferoside B as a prospective therapeutic drug in the tumour.


Asunto(s)
Autofagia , Camellia , Apoptosis , Línea Celular Tumoral , Humanos , Células MCF-7 , Especies Reactivas de Oxígeno
10.
J Immunol Res ; 2020: 7502301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344657

RESUMEN

Acute lung injury (ALI) is an acute inflammatory process in the lung parenchyma. Anemoside B4 (B4) was isolated from Pulsatilla, a plant-based drug against inflammation and commonly applied in traditional Chinese medicine. However, the anti-inflammatory effect and the mechanisms of B4 are not clear. In this study, we explored the potential mechanisms and anti-inflammatory activity of B4 both in vitro and in vivo. The results indicated that B4 suppressed the expression of iNOS, COX-2, NLRP3, caspase-1, and IL-1ß. The ELISA assay results showed that B4 significantly restrained the release of inflammatory cytokines like TNF-α, IL-6, and IL-1ß in macrophage cells. In addition, B4 rescued mitochondrial membrane potential (MMP) loss in (lipopolysaccharide) LPS plus ATP stimulated macrophage cells. Co-IP and molecular docking results illustrated that B4 disrupted the dimerization of TLR4. For in vivo results, B4 exhibited a protective effect on LPS and bleomycin- (BLM-) induced ALI in mice through suppressing the lesions of lung tissues, the release of inflammatory cytokines, and the levels of white blood cells, neutrophils, and lymphoid cells in the blood. Collectively, B4 has a protective effect on ALI via blocking TLR4 dimerization and NLRP3 inflammasome activation, suggesting that B4 is a potential agent for the treatment of ALI.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sustancias Protectoras/farmacología , Multimerización de Proteína/efectos de los fármacos , Saponinas/farmacología , Receptor Toll-Like 4/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Adenosina Trifosfato , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Sustancias Protectoras/química , Saponinas/química , Relación Estructura-Actividad , Receptor Toll-Like 4/química
11.
Chin Med ; 15: 68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625244

RESUMEN

BACKGROUND: Pneumonia refers to the inflammation of the terminal airway, alveoli and pulmonary interstitium, which can be caused by pathogenic microorganisms, physical and chemical factors, immune damage, and drugs. Anemoside B4, the major ingredient of Pulsatilla chinensis (Bunge) Regel, exhibited anti-inflammatory activity. However, the therapeutic effect of anemoside B4 on pneumonia has not been unraveled. This study aims to investigate that anemoside B4 attenuates the inflammatory responses in Klebsiella pneumonia (KP)- and influenza virus FM1 (FM1)-induced pneumonia mice model. METHODS: The network pharmacology and molecular docking assays were employed to predict the targets of anemoside B4's treatment of pneumonia. Two models (bacterial KP-infected mice and virus FM1-infected mice) were employed in our study. BALB/c mice were divided into six groups: control, model group (KP-induced pneumonia or FM1-induced pneumonia), anemoside B4 (B4)-treated group (2.5, 5, 10 mg/kg), and positive drug group (ribavirin or ceftriaxone sodium injection). Blood samples were collected for hematology analysis. The effects of B4 on inflammation-associated mediators were investigated by Enzyme-linked immunosorbent assay (ELISA) and hematoxylin and eosin staining (HE) staining. Proteins expression was quantified by western blotting. RESULTS: The network results indicated that many pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) participated in anemoside B4's anti-inflammatory activity. The counts of neutrophil (NEU) and white blood cell (WBC), the level of myeloperoxidase (MPO), and the release of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 increased by KP or FM1 infection, which were reversed by anemoside B4. In addition, anemoside B4 significantly suppressed the FM1-induced expression of toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and myeloid differentiation protein-2 (MD-2), which were further validated by molecular docking data that anemoside B4 bound to bioactive sites of TLR4. Therefore, anemoside B4 exhibited a significant therapeutic effect on pneumonia via the TLR4/MyD88 pathway. CONCLUSION: Our findings demonstrated that anemoside B4 attenuates pneumonia via the TLR4/Myd88 signaling pathway, suggesting that anemoside B4 is a promising therapeutic candidate for bacterial-infected or viral-infected pneumonia.

12.
Chin Med ; 15: 20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158495

RESUMEN

BACKGROUND: Cryptotanshinone (CPT), as a major component of Salvia miltiorrhiza Bunge (Danshen), displays many pharmacological activities including anti-inflammatory effects. However, the exact cellular and molecular mechanisms of the anti-inflammatory activities of CPT remain to be elucidated. The present study was aimed to clarify its mechanisms on lipopolysaccharide (LPS)-induced inflammatory responses in mouse macrophages, RAW264.7 cells. METHODS: In the current study, the anti-inflammatory properties of CPT were evaluated using LPS-stimulated RAW264.7 cell model. MTT assay was used to determine the viability of RAW264.7 cells. The anti-inflammatory effects of CPT were measured based on the detection of nitric oxide (NO) production (Griess and flow cytometry assay), and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release (ELISA). Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzyme expressions were also determined by western blotting. Besides, by using flow cytometry, we also evaluated the effect of CPT on LPS-induced calcium influx. Finally, the underlying anti-inflammatory mechanisms of CPT were investigated using western blotting to assess the protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K)/AKT, nuclear factor erythroid 2 related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and nuclear factor-kappa B (NF-κB) pathways. RESULTS: Our data showed that CPT inhibited LPS-induced pro-inflammatory cytokine release like IL-6, and TNF-α, as well as NO production. It displayed a significant inhibitory effect on the protein expressions such as iNOS, COX-2, NF-κB pathway like inhibitor of kappa B kinase (IKK)α/ß, inhibitor of kappa B (IκB)-α and NF-κB/p65, PI3K/AKT pathway like PI3K and AKT, and MAPK pathway like c-Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38, in LPS-stimulated RAW264.7 macrophages. Moreover, the immunofluorescence results indicated that CPT suppressed NF-κB/p65 translocation from the cytoplasm into the nucleus. Further investigations showed that CPT treatment increased NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) expressions together with its upstream mediator, Nrf2. In addition, CPT inhibited LPS-induced toll-like receptor 4 (TLR4) and MyD88 expressions in RAW264.7 macrophages. CONCLUSIONS: Collectively, we suggested that CPT exerted significant anti-inflammatory effects via modulating TLR4-MyD88/PI3K/Nrf2 and TLR4-MyD88/NF-κB/MAPK pathways.

13.
Biochem Pharmacol ; 171: 113684, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678492

RESUMEN

Recent discoveries revealed several types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, etc. Necroptosis is mediated by signaling complexes with receptor-interacting protein kinases (RIPs) and mixed lineage kinase domain-like protein (MLKL). Here, we described an MLKL mediated non-canonical necroptosis through reactive oxygen species (ROS) in lung cancer cells triggered by a natural compound, tanshinol A (TSA). Morphologically, TSA-induced necrotic cell death is characterized by increased cell volume, transparent of cytoplasm, and rupture of the cell membrane. Biochemically, it induces intracellular ATP depletion and PI penetration. Molecularly, TSA-induced cell death is mediated by MLKL but independent of RIP1 and RIP3. Furthermore, TSA induces MLKL phosphorylation and membrane translocation, and cytosolic calcium accumulation. However, calcium shows no effect on TSA-induced cell death. Especially, TSA induces intracellular ROS generation, which was found to be the upstream of MLKL. Collectively, our data indicated that TSA triggers a novel type of programmed necrosis mediated by MLKL in lung cancer cells, which might have therapeutic potentials for lung cancer treatment.


Asunto(s)
Ácidos Cafeicos/farmacología , Neoplasias Pulmonares/metabolismo , Necroptosis/efectos de los fármacos , Proteínas Quinasas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Inducción Enzimática/efectos de los fármacos , Humanos , Neoplasias Pulmonares/patología , Fosforilación/efectos de los fármacos
14.
Fitoterapia ; 140: 104413, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31705953

RESUMEN

Five new 5,6-ß-epoxywithanolides (1-5) were isolated from the whole plants of Physalis minima L. Their structural elucidations were achieved by the extensive spectroscopic analysis (IR, UV, HR-ESI-MS, 1D-NMR, and 2D-NMR). The isolates were evaluated for their anti-inflammatory activities on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells and cytotoxic activities against three cancer cell lines, viz. A549 lung adenocarcinoma cells, SMMC-7721 hepatic carcinoma cells and MCF-7 breast cancer cells by using the MTT-based assay. All of them possessed moderate inhibition to the production of nitric oxide with IC50 values from 42.18 to 73.26 µM, and the IC50 values of the cytotoxic activities were in the range of 31.25 to 80.14 µM.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Physalis/química , Witanólidos/farmacología , Células A549 , Animales , Antiinflamatorios/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , China , Humanos , Células MCF-7 , Ratones , Estructura Molecular , Óxido Nítrico/metabolismo , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Células RAW 264.7 , Witanólidos/aislamiento & purificación
15.
J Infect Chemother ; 25(12): 1074-1077, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31401030

RESUMEN

Enterovirus 71 (EV71), a newly emerging life-threatening pathogen induces hand-foot-mouth disease (HFMD), no effective vaccines or specific anti-viral treatments are currently available. In this study, the activity of hederacolchiside C (HSC) against EV71 was investigated, and the antiviral mechanism was explored. HSC displayed apparent antiviral activity in EV71-infected cells probably through activating the host innate immunity. Comparing with EV71-infected group at 24 hpi, the group pretreated with HSC dramatically increased the expression of MAVS, p-IRF3, IRF3 and IFN-ß, the innate immune effectors related to innate immunity. In addition, HSC displayed stronger antiviral activity in EV71-infected suckling mice in comparison with Ribavirin, a broad-spectrum antiviral drug. The results suggest that HSC could have potential as a pharmaceutical drug for HFMD.


Asunto(s)
Antivirales/farmacología , Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico , Pulsatilla/química , Saponinas/farmacología , Animales , Antivirales/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Enterovirus Humano A/efectos de los fármacos , Enfermedad de Boca, Mano y Pie/inmunología , Enfermedad de Boca, Mano y Pie/virología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Ratones , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Saponinas/uso terapéutico , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología
16.
Phytomedicine ; 64: 152934, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31454651

RESUMEN

BACKGROUND: Pulsatilla chinensis is commonly used for the treatment of cancers and inflammatory disorders in China. Our recent studies showed that anemoside B4, its major ingredient, possessed notable antioxidant and protected cisplatin-induced acute kidney injury in vivo. Furthermore, we found the protective effect might be involved its anti-inflammation activities. However, its anti-inflammatory mechanisms are not clear. PURPOSE: In the present study, we extensively investigated the anti-inflammatory and immune-modulatory properties of anemoside B4 in vivo. METHODS: To carry out this work, the xylene-induced ear edema and LPS-induced systemic inflammation of mice model was also used to evaluate the anti-inflammatory activity. Then, anti-inflammatory mechanism of anemoside B4 was further determined by pro-inflammatory cytokines production using enzyme-linked immunosorbent assay (ELISA) and nuclear factor-κ-gene binding (NF-κB) pathway activation by Western blot. At last, immuno-modulatory effects were observed by splenocyte proliferation assay, delayed type hypersensitivity assay (DTH) and T cell subtype assay in mice. RESULTS: 12.5-50 mg/kg anemoside B4 significantly suppressed xylene-induced mice ear edema. Furthermore, it ameliorated LPS-induced kidney and lung inflammation damage, which inhibited pro-inflammatory response by NF-κB pathway in mice. In addition, anemoside B4 decreased CD4+/CD8+ ratio, inhibited splenic lymphocyte proliferation and decreased DNFB-induced changes of ear thickness. CONCLUSION: From these data, it can be concluded that anemoside B4 presented anti-inflammatory and immune-modulatory activities in vivo, and potentially be a novel natural anti-inflammatory drug candidate for treating inflammatory disorder.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Edema/tratamiento farmacológico , Factores Inmunológicos/farmacología , Inflamación/tratamiento farmacológico , Pulsatilla/química , Saponinas/farmacología , Animales , Cisplatino/efectos adversos , Modelos Animales de Enfermedad , Edema/inducido químicamente , Lipopolisacáridos/efectos adversos , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo
17.
Biosci Biotechnol Biochem ; 83(11): 2016-2026, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31272310

RESUMEN

Exposure of PC12 cells to 10 mM glutamate caused significant viability loss, cell apoptosis, decreased activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as increased levels of malondialdehyde (MDA). In parallel, glutamate significantly increased the intracellular levels of ROS and intracellular calcium. However, pretreatment of the cells with acteoside and isoacteoside significantly suppressed glutamate-induced cellular events. Moreover, acteoside and isoacteoside reduced the glutamate-induced increase of caspase-3 activity and also ameliorated the glutamate-induced Bcl-2/Bax ratio reduction in PC12 cells. Furthermore, acteoside and isoacteoside significantly inhibited glutamate-induced DNA damage. In the mouse model, acteoside significantly attenuated cognitive deficits in the Y maze test and attenuated neuronal damage of the hippocampal CA1 regions induced by glutamate. These data indicated that acteoside and isoacteoside play neuroprotective effects through anti-oxidative stress, anti-apoptosis, and maintenance of steady intracellular calcium.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Ácido Glutámico/toxicidad , Glicósidos/química , Glicósidos/farmacología , Neurotoxinas/toxicidad , Alcohol Feniletílico/química , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Malondialdehído/metabolismo , Memoria/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo
18.
J Agric Food Chem ; 67(30): 8339-8347, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31291543

RESUMEN

The dried seeds of Cuminum cyminum L. have been traditionally used as food and medicine. To explore its chemical composition and anti-inflammatory activity, four new compounds (1-4) along with five known compounds (5-9) were isolated from the seeds in the present study. The chemical structures of the new compounds were identified as follows: methyl 3-((7H-purin-2-yl) amino)-3-(4-isopropylphenyl) propanoate (1), 8-(amino(4-isopropylphenyl)methyl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-oxo-4H-chromene-6-carboxylic acid (2), (3,4,5-trihydroxy-6-((4-isopropylbenzyl)oxy)tetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-propoxyphenyl)acrylate (3), and (3,4,5-trihydroxy-6-((5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl)oxy)tetrahydro-2H-pyran-2-yl)methyl 3-(4-isopropylphenyl)-2-methoxypropanoate (4). Compound 2, an atypical nitrogen-containing flavonoid, exhibited the most active inhibitory effect on nitride oxide, with IC50 of 5.25 µM in the lipopolysaccharide-stimulated RAW264.7 cell assay. Compound 2 was found to suppress the expression levels of inducible nitric oxide synthase and cyclooxygenase-2. Furthermore, it was revealed that both nuclear factor κB and mitogen-activated protein kinase were involved in the anti-inflammatory process of compound 2.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Cuminum/química , Flavonoides/química , Flavonoides/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Frutas/química , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Estructura Molecular , FN-kappa B/genética , FN-kappa B/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Células RAW 264.7 , Semillas/química
19.
Pharmacol Res ; 142: 102-114, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30794925

RESUMEN

Dihydrotanshinone (DHT), one of the major ingredients of Salvia miltiorrhiza Bunge (Danshen), displays many bioactivities. However, the activity and underlying mechanism of DHT in anti-inflammation have not yet been elucidated. In this study, we investigated the anti-inflammatory activity and molecular mechanism of action of DHT both in vitro and in vivo. Our data showed that DHT significantly decreased the release of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, THP-1 cells, and bone marrow-derived macrophages (BMDMs), and altered the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). In addition, flow cytometry results indicated that DHT reduced the calcium influx, and generation of reactive oxygen species (ROS), and nitric oxide (NO) generation in LPS-stimulated RAW264.7 cells. Moreover, DHT suppressed the transcription of nuclear factor-κB (NF-κB), the expressions of NF-κB proteins, and nuclear translocation of NF-κB/p65, thereby suggesting that the NF-κB pathway played a role in the anti-inflammatory action of DHT. In addition, DHT attenuated LPS-challenged activator protein-1 (AP-1) activity, resulting from interference of the mitogen-activated protein kinase (MAPK) pathway. The molecular docking simulation of DHT to toll-like receptor 4 (TLR4) suggested that DHT binds to the active sites of TLR4 to block TLR4 dimerization, which was further corroborated by cellular thermal shift assay and co-immunoprecipitation (Co-IP) experiments. Furthermore, the recruitment of myeloid differentiation primary response gene 88 (MyD88) and the expression of transforming growth factor-b (TGF-b)-activated kinase 1 (p-TAK1) were disturbed by the inhibition of TLR4 dimerization. Thus, investigating the molecular mechanism of DHT indicated that TLR4-MyD88-NF-κB/MAPK signaling cascades were involved in the anti-inflammatory activity of DHT in vitro. In in vivo mouse models, DHT significantly ameliorated LPS-challenged acute kidney injury, inhibited dimethylbenzene-induced mouse ear oedema, and rescued LPS-induced sepsis in mice. Taken together, our results indicated that DHT exhibited significant anti-inflammatory activity both in vitro and in vivo, suggesting that DHT may be a potential therapeutic agent for inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Fenantrenos/farmacología , Receptor Toll-Like 4/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Animales , Antiinflamatorios/uso terapéutico , Citocinas/genética , Citocinas/metabolismo , Dimerización , Edema/inducido químicamente , Edema/tratamiento farmacológico , Furanos , Células HEK293 , Humanos , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fenantrenos/uso terapéutico , Quinonas , Células RAW 264.7 , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Células THP-1 , Xilenos
20.
Phytomedicine ; 56: 136-146, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668334

RESUMEN

BACKGROUND: Cisplatin is a highly effective chemotherapeutic agent commonly used in the treatment of a wide variety of malignancies. However, its clinical usage is severely limited by its serious side effects, especially nephrotoxicity. Anemoside B4, is a major saponins, rich in root of Pulsatilla chinensis (Bunge), has anti-inflammation in vitro. However, the antioxidant or anti-inflammatory effects of anemoside B4 in cisplatin-induced nephrotoxicity have not been clearly demonstrated. PURPOSE: In this study, we investigated whether anemoside B4 exhibits protective effects against cisplatin-induced nephrotoxicity involving antioxidant or anti-apoptosis effects. METHOD: To clarify it, the effects of anemoside B4 on HEK 293 cell viability was measured by CCK8 kits, intracellular antioxidant capacity including glutathione reduced (GSH), catalase (CAT) were estimated using chemical kits, apoptosis rate and intracellular reactive oxygen species (ROS) was analyzed by flow cytometry, apoptosis protein was measured by western blotting. In vivo model of cisplatin-induced mice acute renal failure was performed to evaluate the properties of anemoside B4. Besides, to evaluate the effect of anemoside B4 on the anti-tumor activity of cisplatin, S180 xenograft models were used. RESULTS: Anemoside B4 potently increased cisplatin-treated HEK 293T cells viability on the concentration and time manners and inhibited cells apoptosis, as demonstrated by the decreased cleaved PARP protein expressions. Anemoside B4 decreased reactive oxygen species (ROS) content and improved superoxide dismutase (SOD) activity. In vivo experiment showed that pretreatment with anemoside B4 effectively adjusted body weight and kidney index, and reduced cisplatin-elevated blood urea nitrogen (BUN) and creatinine (CREA) levels, as well as ameliorated the histopathological damage. Further studies showed that anemoside B4 did not reduce antitumor activity of cisplatin in murine S180 cancer xenograft tumor models. In addition, anemoside B4 per set showed low toxicity in mice. CONCLUSION: The strong antioxidant and anti-apoptosis effects of anemoside B4 may provide therapeutic potential for cisplatin-induced nephrotoxicity without compromising its therapeutic efficiency.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Saponinas/farmacología , Animales , Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Cisplatino/farmacología , Glutatión/metabolismo , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Pruebas de Función Renal , Masculino , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA